Clustering
Spatial clustering
spatialprompt.SpatialCluster.fit_predict(self,st_array,x_cord,y_cord,
n_neighbor=20,n_itr=3,n_cluster="auto",n_hvgs=1000)
Description
This program perform spatial clustering for spatial data .
Parameters
st_array
: Matrix of Spatial data, where rows are the cells and columns are the genes.x_cord
: X coordinate array of spatial data.y_cord
: Y coordinate array of spatial data.n_hvgs
(default=1000): Number of high variance genes to consider for analysis.n_neighbor
(default=45): Number of neighbors to consider for weighted mean expression calculation.n_itr
(default=3): Number of iterations message passing layer pull information from neighbors.n_cluster
(default:"auto"): Number of clusters needed to perform.
Usage
import spatialprompt as sp
# Create an instance of Spatialclustering
clus_model = sp.SpatialCluster()
# Example call to predict_cell_prop
cortex_clus_annotations = clus_model.fit_predict(cortex_st_mat,
x_cor = cortex_x,
y_cor = cortex_y,
n_cluster=20)