Deconvolution
Spatial spot-deconvolution
spatialprompt.SpatialDeconvolution.predict_cell_prop(sc_array, st_array,sc_genes, st_genes, sc_labels, x_cord, y_cord,
n_hvgs=1000, min_cell=10, max_cell=15, return_prop=True,
spot_ratio=[0.33, 0.33, 0.33], n_neighbor=45, n_itr=3)
Description
This program performs spot deconvolution in spatial data using scRNA-seq data reference.
Parameters
sc_array
: Matrix of Single-cell data, where rows are the cells and columns are the genes.st_array
: Matrix of Spatial data, where rows are the cells and columns are the genes.sc_genes
: Gene names of thesc_array
matrix.st_genes
: Gene names of thest_array
matrix.sc_labels
: Cell type annotations ofsc_array
.x_cord
: X coordinate array of spatial data.y_cord
: Y coordinate array of spatial data.n_hvgs
(default=1000): Number of high variance genes to consider for analysis.min_cell
(default=10): Minimum number of cells to simulate the spatial spot.max_cell
(default=15): Maximum number of cells to simulate the spatial spot.return_prop
(default=True): Return proportions of cell types if true. Else return the cell type having a higher proportion.spot_ratio
(default=[0.33, 0.33, 0.33]): Ratio of proportions of spots to be simulated using criteria 1/2/3 mentioned in the paper. If the labels are ambiguous cell types (e.g., EX_L3_4_5 have cell types of L3 AND L4), thenspot_ratio
should be provided as a list, e.g.,[0, 0, 1]
.n_neighbor
(default=45): Number of neighbors to consider for weighted mean expression calculation.n_itr
(default=3): Number of iterations message passing layer pull information from neighbors.
Usage
import spatialprompt as sp
# Create an instance of Spatialdeconvolution
deconv_model = sp.SpatialDeconvolution()
# Example call to predict_cell_prop
result = deconv_model.predict_cell_prop(sc_array, st_array,
sc_genes, st_genes,
sc_labels,
x_cord, y_cord)